62 research outputs found

    LISA Pathfinder

    Get PDF
    USA Pathfinder is a space mission dedicated to demonstrating technology for the Laser Interferometer Space Antenna (LISA). LISA is a joint ESA/NASA mission to detect low-frequency gravitational waves on the 0.0001 to 0.1 Hz frequency band. LISA is expected to observe 100's of merging massive black hole binaries out z-15, tens of thousands of close compact binary systems in the Milky Way, merging intermediate-mass black hole binaries, tens of stellar-mass black holes falling into supermassive black holes in galactic centers, and possibly other exotic sources. Several critical LISA technologies have not been demonstrated at the requisite level of performance. In spaceflight, and some fight hardware cannot be tested in a 1-g environment. Hence, the LISA Pathfinder mission is being implemented to demonstrate these critical LISA technologies in a relevant flight environment. LISA Pathfinder mimics one arm of the LISA constellation by shrinking the 5-million-kilometer armlength down to a few tens of centimeters. The experimental concept is to measure the relative separation between two test masses nominally following their own geodesics, and thereby determine the relative residual acceleration between them near 1 mHz, about a decade above the lowest frequency required by LISA. To implement such a concept, disturbances on the test masses must be kept very small by many design features, but chiefly by "drag-free" flight. A drag-free spacecraft follows a free-falling test mass which it encloses, but has no mechanical connection to. The spacecraft senses it's orientation and separation with respect to the proof mass, and its propulsion system is commanded to keep the spacecraft centered about the test mass. Thus, the spacecraft shields the test mass from most external influences, and minimizes the effect of force gradients arising from the spacecraft, and acting on the test mass. LISA Pathfinder will compare the geodesic of one test mass against that of the other. Only a metrology system based on interferometry can achieve the displacement sensitivity. Interferometers monitor the separation of both test masses with a sensitivity comparable to that required by LISA, and using the same technologies. LISA Pathfinder is scheduled to be launched in the first half of 1020 to a Lissajous orbit around the first Sun-Earth Lagrange point, L1. In addition to a complete European technology package (the LISA Technology Package, or LTP), LISA Pathfinder will also carry thrusters and software, known as ST-7, a part of NASA's New Millennium Program

    A Possible U.S. Contribution to eLISA, a Gravitational-Wave Mission Concept for ESA's L2 Opportunity

    Get PDF
    Scientists from the member states of the European Space Agency (ESA) that proposed the New Gravitational-Wave Observatory (NGO) have organized the eLISA Consortium to propose for ESAs next large mission opportunity. The Evolved Laser Interferometer Space Antenna (eLISA) concept is derived from the well-studied LISA concept for a space-based, gravitational-wave detector. eLISA will use the technology being developed by the LISA Pathfinder mission in a two-arm version that achieves much of the LISA science endorsed by the Decadal Survey. If invited, NASA could join the project as a junior partner with a ~20 share. This could enable a third arm and substantially augment the science return. While the details of the eLISA concept to be proposed have not yet been finalized, the SGO Mid concept, recently studied in the U.S., constitutes a possible augmented concept for an ESA/NASA partnership. The eLISA concept and the SGO Mid concept are described and compared

    FY15 Gravitational-Wave Mission Activities Project

    Get PDF
    The Gravitational-Wave (GW) team at Goddard provides leadership to both the US and international research communities through science and conceptual design competencies. To sustain the US effort to either participate in the GW mission that ESA selected for the L3 opportunity or to initiate a NASA-led mission, the Goddard team will engage in the advancement of the science and the conceptual design of a future GW mission. We propose two tasks: (1) deliver new theoretical tools to help the external research community understand how GW observations can contribute to their science and (2) explore new implementations for laser metrology systems based on techniques from time-domain reflectometry and laser communications

    NASA's Gravitational - Wave Mission Concept Study

    Get PDF
    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized

    Recent Progress at NASA in LlSA Formulation and Technology Development

    Get PDF
    Over the last year, the NASA portion of the LISA team has been focused its effort on advancing the formulation of the mission and responding to a major National Academy review. This talk will describe advances in, and the current state of: the baseline mission architecture, the performance requirements, the technology development and plans for final integration and test. Interesting results stimulated by the NASINRC Beyond Einstein Program Assessment Review will also be described

    The NASA L3 Study

    Get PDF
    The Astrophysics Implementation Plan calls for a minority role in L3, planned for launch in 2034. L3 The third large mission in ESAs Cosmic Visions 2015-2025 Programme NASA and ESA have been discussing a collaboration for 2 years Gravitational Observatory Advisory Team (GOAT) ESA study evaluating and recommend scientific performance tradeoffs, detection technologies, technology development activities, data analysis capabilities, schedule and cost US representatives: Guido Mueller, Mark Kasevich, Bill Klipstein, RTS Started in October 2014, concluding with a final report in late Marchor early April 2016. ESA solicited interest from ESA Member States in November 2015 NASA is continuing technology development support. ESA is restarting technology development activities

    NASA's Preparations for ESA's L3 Gravitational Wave Mission

    Get PDF
    No abstract availabl

    Concepts for a Space-Based Gravitational-Wave Observatory (SGO)

    Get PDF
    The low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum has the most interesting astrophysical sources. It is only accessible from space. The Laser Interferometer Space Antenna (LISA) concept has been the leading contender for a space-based detector in this band. Despite a strong recommendation from Astro2010, constrained budgets motivate the search for a less expensive concept, even at the loss of some science. We have explored the range of lower cost mission concepts derived from two decades of studying the LISA concept We describe LlSA-like concepts that span the range of affordable and scientifically worthwhile missions, and summarize the analyses behind them

    Gravitational-wave Mission Study

    Get PDF
    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studie

    A Space-based Gravitational-Wave Observatory at NASA

    Get PDF
    No abstract availabl
    corecore